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Cardiovascular disease remains the leading cause of morbidity and mortality, imposing a major disease burden worldwide.
Therefore, there is an urgent need to identify new therapeutic targets. Recently, the concept that the heart acts as a secretory organ
has attracted increasing attention. Proteins secreted by the heart are called cardiokines, and they play a critical physiological role
in maintaining heart homeostasis or responding to myocardial damage and thereby influence the development of heart diseases.
Given the critical role of cardiokines in heart disease, they might represent a promising therapeutic target. This review will focus
on several cardiokines and discuss their roles in the pathogenesis of heart diseases and as potential therapeutics.

1. Introduction

Despite an obvious decrease in the number of deaths
attributable to cardiovascular disease (CVD) during the
preceding decades, it remains the primary killer worldwide
and, unfortunately, the hospitalization rate in patients less
than 55 years old has not been improved [1]. With changing
lifestyles and an aging population, cardiovascular risk factors
have become more prevalent, and the number of people
living with CVD is increasing, thereby causing a seemingly
unbearable economic burden for society [2]. It is therefore
necessary to identify new strategies to achieve more accurate
diagnosis, which could result in better treatments for CVD.
Cardiac myocytes have been reported to synthesize and
release natriuretic peptides [3-5]. In addition to its role as
a mechanically beating organ, the role of the heart as a
secretory organ has attracted increasing attention. It has been
well recognized that investigating the pathogenesis of heart
failure (HF) has transformed from an investigation of car-
diac hemodynamics to neuroendocrinological assessments.
Cardiac dysfunction can significantly activate the natriuretic
peptide system [4], and atrial natriuretic peptide (ANP) and
brain natriuretic peptide (BNP) are both closely related to

the motion of the cardiac wall (such as under conditions of
excessive blood, assumption of the trendelenburg position, or
increased central venous pressure) and improving the signal
transduction between the heart and peripheral organs. Given
that this paracrine/autocrine signaling within the heart plays
a critical physiological role in the process of cardiac diseases,
there is an urgent need to identify novel therapeutic targets
based on the secretory function of the heart.

A growing body of evidence showed that the peptides
or proteins secreted from cardiac cells can be considered
cardiokines [6]. Most cardiokines, as important mediators,
play pivotal roles in maintaining healthy heart homeostasis
or in the response to myocardial damage. It has been reported
that cardiokines not only have physiological involvement in
the stress response, damage repair, and myocardial remod-
eling, but could also participate in protein synthesis in
distal organ tissues and systemic metabolic processes [7,
8]. Additionally, cardiokines are differentially expressed in
various physiological conditions of the heart, and these
secreted cardiokines are intended to maintain healthy cardiac
function through paracrine/autocrine pathways or affect the
response of cardiomyocytes and cardiac fibroblasts (CFs)
to pathological abnormalities caused by heart damage or
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other associated inflammatory processes, ultimately eliciting
a protective or harmful effect on cardiac function [7, 8].
Many researchers have realized that cardiokines could act
as biomarkers to evaluate cardiac function, and therefore con-
tribute to clinical diagnosis, and provide novel therapeutic
targets for cardiac diseases. Increasing attention has been paid
by researchers in this field to identifying novel cardiokines,
with a view to understanding abnormalities in intercellular
communication to better diagnose heart disease. In addition
to regular laboratory examinations, advanced techniques
including gene expression analysis, array screening, cloning,
and other methods provide advanced approaches to identify
novel cardiokines and determine the networks between
cardiokines that are dysregulated during cardiac stress [7, 8].
In this review, we briefly introduce several cardiokines and
discuss their roles in the pathogenesis and treatment of car-
diac diseases. Furthermore, we summarize the physiological
effects of these cardiokines in cardiac diseases in Table 1.

2. The Beneficial Role of Cardiokines in CVD

2.1. Natriuretic Peptides. Natriuretic peptides, and in partic-
ular ANP and BNP, secreted by the cardiovascular system,
have a particularly large impact on the occurrence and
development of CVD in a paracrine/autocrine manner [9, 10].
It is well recognized that ANP and BNP are useful for the
clinical diagnosis, treatment, and prognosis of CVD [9, 10].
There is evidence that ANP is significantly elevated in patients
with left ventricular dysfunction which is independent of
clinical symptoms, and that the ANP levels in the circulation
are negatively correlated with ejection fraction (EF) [11].
Interestingly, increased levels of ANP in the circulation are
positively correlated with the severity of congestive heart
failure (CHF), whereas ANP levels are significantly decreased
after an improvement in CHF symptoms.

BNP, also known as B-type natriuretic peptide, is mainly
secreted by ventricular myocytes [12]. Although BNP has a
variety of biological actions, cardiomyocytes only directly
synthesize the precursor of BNP (the 108 amino acid proBNP)
[12, 13]. ProBNP, which is initially stored in cardiomyocytes,
is released and instantly decomposes into BNP and inactive
NT-proBNP in equimolar quantities when the ventricular
walls experience stretching forces or ventricular pressure is
increased [3]. It therefore appears that BNP and its precursor
play a clinically significant role in response to various CVDs
such as HE hypertension, and arrhythmias [14, 15]. In
addition, BNP contributes to better diagnosis of acute HE,
and in particular HF classification [16]. Similarly, BNP is
closely associated with the prognosis of chronic HF and
also could be used as an independent prognostic marker for
CVD. The European Society of Cardiology has reccommended
BNP as an indicator for the diagnosis of HF in 2001, and
the 2005 American guidelines for HF further reinforced this
recommendation [17]. Theoretically, BNP and NT-proBNP
are equally significant for CVD diagnosis. A recent systematic
review suggested that BNP strongly correlates with NT-
proBNP, and joint measurements could improve the accuracy
and reliability of the diagnosis of acute or chronic HF [18].
Compared with BNP, NT-proBNP possesses a longer half-life
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and is more stable in plasma. NT-proBNP levels are closely
related to newly synthesized rather than stored BNP and
NT-proBNP preferentially reflects the activation of the BNP
pathway [19].

2.2. Interleukin-33. The inflammatory response is thought to
be one of the most important mechanisms in the process
of atherosclerosis. Abnormalities in the levels of various
inflammatory cytokines have been found in patients with
acute coronary syndrome [20, 21]. Extremely elevated inter-
leukin (IL) levels in the heart and myocardial necrosis during
acute myocardial infarction (MI) indicate that ILs act as an
important regulatory factor in acute MI [22].

IL-33, mainly secreted by CFs, is a paracrine signaling
molecule involved in crosstalk between fibroblasts and car-
diomyocytes, and it is also the specific ligand for soluble ST2
(sST2), which is confirmed to be a cardiomyocyte protein.
Mechanical traction and stimulation remarkably upregulate
the expression of IL-33 in cardiomyocytes and fibroblasts,
as well as levels of ST2 (sST2 levels are significantly higher
than those of ST2), and then sST2 exhibits competitive inhi-
bition, thereby blocking the IL-33/ST2 signaling pathway and
attenuating the protective effect of IL-33 on cardiomyocyte
hypertrophy and myocardial fibrosis [23, 24]. Furthermore,
an aldosterone receptor antagonist indirectly upregulates IL-
33 expression by reducing ST2 levels, enhancing the IL-
33/ST2 signaling pathway and then reducing inflammation
and fibrosis after MI [25]. In addition, serum ST2 levels are
closely associated with the prognosis of MI and HF [26], and
they have been recommended as a biomarker for additional
risk stratification in the American Heart Failure Guidelines
2013 [27]. Studies of coronary heart disease patients also
show that genetic polymorphisms of these inflammatory
cardiokines could increase the risk of coronary heart disease
(28, 29].

2.3. Follistatin. Follistatin is an extracellular modulator that
selectively binds to proteins of the transforming growth
factor-f super family (TGF-p; discussed later). Follistatin-
like 1 (FSTLI), also known as transforming growth factor
B-stimulated clone 36 (TSC-36) [30], has been identified as
a cardioprotective factor that could protect cardiomyocytes
and decrease apoptosis induced by ischemia/reperfusion (IR)
injury [31, 32]. The physiological mechanisms underlying
FSTLI1 action are quite different from those of other fol-
listatins. A recent study revealed that the expression of
FSTLI in the ischemic area after MI is obviously increased
in fibroblasts, but not in cardiomyocytes [33]. Compared
with wild-type mice, the activation and differentiation of
myofibroblasts in FSTL1 gene-knockout mice were attenu-
ated, and the accelerated formation of extracellular matrix
(ECM), such as collagen and fibrous proteins, in the ischemic
heart was obviously reduced, suggesting an increased risk
of mortality with cardiac rupture. These findings indicate
that FSTLI could stimulate the activation of fibroblasts and
protect against cardiac rupture and left ventricular remod-
eling [34]. Interestingly, Altekoester and colleagues reported
that bioengineered FSTLI patches reduce heart scarring and
induce angiogenesis, which may provide an effective strategy
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for reducing the risk of cardiac rupture and unfavorable
remodeling after MI [35].

In a study by Tanaka et al. [36, 37], FSTLI expression
induced by cardiac stress was described to modulate cardiac
hypertrophy, while FSTL1 knockout mice showed more
serious cardiac hypertrophy and cardiac dysfunction after
HE Similarly, Ogura and coworkers [38] demonstrated that
recombinant FSTLI administered in mice or pig models
could remarkably reduce the proportion of the MI region
after IR, subsequently inhibiting apoptosis and the inflam-
matory response via adenosine 5’ -monophosphate- (AMP-)
activated protein kinase and bone morphogenetic protein-4-
dependent mechanisms. Moreover, overexpression of FSTLI
also minimized the deleterious effects of IR injury [38]. All
these findings indicate that FSTL] may become a therapeutic
target for cardiac hypertrophy or other heart diseases.

2.4. Fibroblast Growth Factor 21. Fibroblast growth factors
(FGFs) play a definite role in inducing angiogenesis, repairing
impaired endothelial cells, and promoting vascular smooth
muscle cell proliferation [39, 40]. To date, there are 22
identified human or murine FGFs. FGF sequences between
different animals have a high relative homology. FGFs
transmit signals inside cells through their related external
receptors on the cell membrane [41].

FGF21, a new member of the FGF family, consists of
209 amino acids. It is physiologically decomposed into 181
amino acids for maturity. FGF21 is mainly produced and
released from the liver, but a recent study indicates that
cardiomyocytes and cardiac microvascular endothelial cells
(CMECs) might also express FGF21 to improve cardiac
remodeling and reduce heart damage [42]. FGF21 specifically
binds to FGFRIc in the heart to exert biological effects
through activation of its coreceptor f3-klotho [41]. The N-
terminus of FGF21 binds to FGFRIc while the C-terminus
binds to 5-Klotho with a high affinity to form a complex
that phosphorylates FGFRIc and activates downstream signal
transduction (extracellular regulated protein kinases (ERK)
signaling pathway), which explains the intracellular effects of
FGF21 [43, 44]. In addition, FGF21 is secreted into the sys-
temic circulation by damaged myocardial or endothelial cells
and affects cell surface receptors to regulate lipid metabolism
and protect against oxidative stress or inflammatory injury,
thereby leading to amelioration of atherosclerosis and pro-
tection against ischemic myocardium and IR injury [45].

2.5. Secreted Frizzled-Related Protein. Secreted frizzled-
related protein-3 (Sfrp-3) is the strongest Wnt signal antag-
onist in the Sfrps family. Recent studies revealed that Wnt
signaling is involved in cardiac hypertrophy [46, 47], as
well as in the progression of late atherosclerosis and it is
significantly associated with vascular inflammation, endothe-
lial dysfunction, calcification, and intimal thickening [48].
Askevold et al. [49] demonstrated that Sfrp3 levels are
markedly elevated in patients with HE, which is consistent
with the New York Heart Association (NYHA) functional
classification. In contrast, Sfrp3 is significantly decreased in
end-stage HF patients after treatment [50]. It is therefore
likely that Wnt/Sfrp3 might play a significant role in left

ventricular remodeling. Furthermore, mRNA levels of Sfrp3
are elevated in cardiomyocytes, endothelial cells, and CFs in
the MI region in mouse models [49, 50]. Sfrp3 appears to be
a biomarker reflecting the pathogenesis of HF and a potential
therapeutic target for heart diseases.

Similar to Sfrp3, Sfrp2 plays a critical role in inhibiting
apoptosis and inflammatory reactions through interfering
with Wnt signaling [51]. The expression of Sfrp2 in the
murine heart after MI is significantly upregulated, suggesting
that Sfrp2 is a stress-inducible cardiokine [52]. Further-
more, an exogenous injection of Sfrp2 at a therapeutic
dose could deactivate the activity of bone morphogenic
protein 1 (Bmpl)/Tolloid-like metalloproteinase [53], thereby
inhibiting collagen deposition at the late stage of MI and
improving left ventricular function. Therefore, Sfrp2 is a
potential therapeutic target for antifibrosis therapies [54].

2.6. Macrophage Migration Inhibitory Factor. Macrophage
migration inhibitory factor (MIF) is a highly conserved factor
closely related to the inflammatory response. MIF is released
from necrotic cardiomyocytes after MI, and the levels in cir-
culation are rapidly increased after stimulation since the cells
produce and store MIF before the inflammatory response [55,
56]. Furthermore, increased MIF levels are closely associated
with the infarct region [57], making it a potential biomarker.
A previous study reported that the ~173G/C polymorphism
of MIF is associated with coronary heart diseases [58].

After MI, MIFs of different cellular sources play opposing
physiological roles. In a study by White et al. [59], mice
with MIF deficiency in bone marrow derived-cells had a
lower incidence of cardiac rupture after MI, whereas MIF
deficiency in somatic/cardiac cells accelerated ventricular
dilatation and dysfunction. In conclusion, the majority of
MIFs in the infarcted myocardium are from infiltrating
inflammatory cells, rather than cardiogenic cells. Inhibiting
MIF from inflammatory cells could protect cardiac function
and improve MI prognosis. Moreover, MIF protects the
heart from short-term hypoxia, but, with the prolongation of
ischemia and hypoxia, the protective effect of MIF in the heart
is gradually weakened. Meanwhile, the proinflammatory
effect of MIF gradually emerges, eventually exacerbating
myocardial injury [55]. Collectively, as mentioned previously,
this bidirectional effect of MIF may be associated with its
different origins.

2.7. Neuregulin. Neuregulin (NRG) is a member of the
epidermal growth factor (EGF) family and is mainly secreted
by microvascular endothelial cells and endocardium in the
heart. NRG can promote angiogenesis, reverse myocardial
remodeling, and improve apoptosis and oxidative stress. It
has recently been reported that NRG is also an important
signaling protein in the cardiovascular system and in regu-
lating cardiac development and cardiac function, since the
tyrosine kinase receptor of NRG (ErbB) has been detected
on the surface of cardiomyocytes [60]. Hedhli et al. demon-
strated that hypoxia-reoxygenation could induce myocardial
endothelial cells to express and release NRG, and that NRG
could protect adult mouse cardiomyocytes against apoptosis
during hypoxia-reoxygenation [61]. In addition, NRG may



directly improve fibrosis [62] and induce the production
and secretion of IL-la and repair factors (like crypto-1),
which affect cardiac healing through paracrine signaling [60].
These findings indicate that endothelium-derived NRG has
a protective effect in the ischemic myocardium and it may
represent a new therapeutic target for heart diseases.

2.8. Adrenomedullin. Adrenomedullin (ADM) is a product
of vascular endothelial cells, smooth muscle cells, and car-
diomyocytes and is thought to be a local factor in controlling
vascular tension, cardiac contractility, and renal sodium
excretion [63]. Cheung et al. suggested a significant increase
of plasma ADM levels in patients with CHF because of
neuroendocrine reactions [64].

ADM levels are associated with endothelial injury and
can indicate the severity of atherosclerotic endothelial cell
injury [65]. In addition, a previous study showed that ADM
is beneficial for HF and MI and that short-term treatment
using ADM reduces the area of MI and IR injuries because
of its antioxidant and antiapoptosis effects [66]. A follow-
up study by Nishida et al. demonstrated that a high risk
for CVD was associated with abnormal plasma levels of
ADM in 121 patients [67]. This study suggested that plasma
ADM is an independent predictor of cardiovascular events
in high risk patients [68, 69]. In conclusion, ADM is a
predicative biomarker for the onset of CVD, and in particular
HE

2.9. Protease Inhibitor 16. Protease inhibitor 16 (PI16) is a pro-
tein secreted by cardiomyocytes and it might elicit inhibitory
effects on myocardial hypertrophy. It is strongly upregulated
in the early phase of HF and restrains the growth of cardiomy-
ocytes in vitro and in vivo. Overexpression of PI16 inhibits
hypertrophy in cultured cardiomyocytes. In contrast, PI16
knockout activates hypertrophy [70]. Interestingly, it has been
determined that the Kruppel-like factor 2- (KLF2-) mediated
ERK5-dependent signaling pathway may be involved in PI16
inhibition of endothelial migration and proliferation, which
contributes to the maintenance of vascular homeostasis [71].
Adenovirus-mediated PI16 overexpression inhibits the secre-
tion of matrix metalloproteinases (MMPs; discussed later).
In addition, inflammatory cytokines including IL-13 and
tumor necrosis factor-ow (TNF-«) have a significant impact
on the NF-«B signaling pathway by strongly inhibiting the
expression of PI16. It is therefore likely that PI16 is an
endogenous protective cardiokine, which could be applied
as a therapeutic target in heart diseases, such as HF and
hypertrophic cardiomyopathy.

2.10. Neurotrophins. Mesoscopic astrocyte-like neurotrophic
factor (MANF), an endoplasmic reticulum (ER) stress pro-
tein secreted by cardiomyocytes, protects cells against stress
in a paracrine/autocrine manner. ER stress could activate
transcription factor 6 (ATF6), which induces the expression
and secretion of MANF [72]. It has also been reported that
MI activates MANF expression in cardiomyocytes and non-
myocytes, attenuating cardiac hypertrophy and myocardial
ischemic injury. Additionally, a preclinical study showed
that MANF knockout increases myocardial ischemia after
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ischemia reperfusion [72]. In contrast, increasing the level
of MANF by administering recombinant MANF protein
protects against heart injury in mice [73]. An in vitro study
using cultured cardiomyocytes indicated that MANF could
exert inhibitory effects on stress-induced hypertrophy [74]. It
is therefore likely that MANF is a beneficial cardiokine that
assists with recovery following cardiac diseases.

Similar to MANFE, cerebral dopamine neurotrophic factor
(CDNF) is an ER stress protein that can be induced by the
activation of ER stress in cultured cardiomyocytes [75]. In
addition, overexpression of CDNF improves cell viability and
protects cardiomyocytes against ER stress-induced apoptosis.

Neuron-derived neurotrophic factor (NDNF) [76], a
proangiogenic secreted protein with a fibronectin type III
domain, improves poor myocardial remodeling after infarc-
tion and enhances cardiac cell survival and angiogene-
sis through a focal adhesion kinase/Akt-dependent path-
way. Mice intramuscularly injected with adenovirus vectors
expressing NDNF exhibit better left ventricular systolic and
diastolic function after MI, as well as enhanced capillary
formation and reduced posterior cardiomyocyte apoptosis
and hypertrophy. Consequently, treatment of cultured car-
diomyocytes using recombinant NDNF could reduce apop-
tosis under hypoxic conditions.

Brain-derived neurotrophic factor (BDNF) is widely
expressed in many nonneural tissues such as vascular
endothelial cells and myocardial cells, and it plays a role
in regulating vascular repair and promoting wound healing
[77]. It plays an important role in the improvement of
myocardial microcirculation after myocardial damage [78].
Myocardial ischemia preconditioning increases the expres-
sion of BDNF mRNA and protein in cardiomyocytes, suggest-
ing that BDNF exerts a protective action against myocardial
IR by reducing apoptosis and enhancing antioxidant activity
in the heart [79]. Tropomyosin receptor kinase B (TrkB), a
functional receptor of BDNE mediates downstream signaling
through dimerization with BDNF and intracellular kinase-
specific tyrosine phosphorylation, thereby enhancing cardiac
microvascular endothelial cell proliferation and survival [80,
81]. It is therefore possible that BDNF is helpful during
myocardial repair by promoting neovascularization.

3. The Detrimental Role of
Cardiokines in CVD

3.1. Angiotensin-II. Angiotensin-II (Ang-II) is mainly syn-
thesized and released by the renin-angiotensin-aldosterone
system (RAAS) [82]. Interestingly, a study by Chen et
al. demonstrated that Ang-II could also be produced by
cardiomyocytes and fibroblasts in the heart, which elicits
biological effects through paracrine or autocrine pathways
[83]. CFs are the key cells initiating the formation of myocar-
dial fibrosis. Zhang et al. demonstrated that Ang-II has the
potential to abnormally increase the growth of CFs, resulting
in myocardial fibrosis, through a transient receptor potential
melastatin-7 channel-mediated (TRPM?7, calcium channels)
inward calcium current [84]. In addition, Ang-II promotes
the expression of the Ets-1 gene in CFs, which is involved
in tissue fibrosis remodeling, in a time and concentration
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dependent manner via the Ang-II 1 receptor (ATIR), c-
Jun N-terminal kinase (JNK), or ERK signaling pathway
[85]. Furthermore, pretreatments using losartan (an ATIR
inhibitor), PD98059 (an ERK inhibitor), or SP600125 (a JNK
inhibitor) facilitate the inhibition of cell proliferation and
myocardial fibrosis by significantly downregulating profibro-
genic factors such as connective tissue growth factor (CTGF)
and plasminogen activator inhibitor-1 (PAI-1) [86]. Similarly,
Ang-II leads to cardiac diastolic dysfunction by inducing
myocardial fatty acid oxidation [87]. Given the critical role of
Ang-ITin CHE, it may aid accurate diagnosis and act as a pre-
dictor for clinical outcomes [88, 89]. Moreover, NT-proBNP
is highly associated with altered levels of Ang-II. Together,
this evidence suggests that combined measurements of NT-
proBNP with Ang-II could effectively improve diagnostic
accuracy for CHF [90].

3.2. Interleukin-1P, Interleukin-6, and Interleukin-18. In con-
trast to the role of IL-33, some interleukins have a detrimental
effect in heart diseases. A preliminary study indicated that IL-
13 might contribute to the onset of cardiomyocyte hypertro-
phy [91] and that sustained high levels of IL-15 not only cause
cardiac pump impairment but also aggravate undesirable
cardiac remodeling [92]. Additionally, IL-18 induces the
expression of nitric oxide (NO) synthase and weakens the
positive effects of 3-adrenergic agonists on cardiomyocytes
[93,94]. Furthermore, the level of IL-6 in the blood is elevated
in patients with MI, and sustained excess IL-6 production
leads to cardiac damage through glycoprotein 130 (gpl30)
[95, 96]. Circulating levels of IL-6 are also closely related
to the severity of left ventricular dysfunction and are an
effective predictor for subsequent clinical complications [97].
Moreover, IL-18 is an independent risk factor in the formation
and development of plaques in atherosclerosis by reducing
the stability of atherosclerotic plaques and ECM degradation
(98, 99].

3.3. Tumor Necrosis Factor-oe. Tumor necrosis factor-o (TNF-
«) is expressed by myocardial cells under stress and it
is a harmful cardiokine involved in atherosclerosis [100].
TNF-« is upregulated during CHF and it contributes to
impaired myocardial contractility, cardiomyocyte apoptosis,
and myocardial remodeling. More importantly, serum levels
of TNF-« are associated with CHF severity [101, 102].

There are several studies on the relationship between the
expression of TNF-« and IL-1f with secondary ventricular
arrhythmias in patients with acute coronary syndromes [103,
104], in which TNF-« and IL-1p are significantly upregulated
and the levels increase with the deterioration of ventricular
arrhythmia. Consequently, TNF-« and IL-1f3 are helpful in
predicting the occurrence of secondary ventricular arrhyth-
mia in patients with acute coronary syndrome and could
be applied as useful biomarkers in estimating the severity
of ventricular arrhythmia. Three possibilities underlie these
pathological mechanisms: (1) TNF-« may be related to
the opening of calcium ion channels in cardiomyocytes
through a signal transduction pathway such as phospholipase
A2/arachidonic acid (PLA2/AA), which affects cardiomy-
ocyte repolarization and impairs contraction [105, 106]; (2)

TNF-« could alter the potassium channels of cardiomyocytes
via a protein kinase A (PKA) signaling pathway and inhibit
rectifying potassium currents, ultimately causing myocardial
abnormalities [107]; (3) TNF-« has also been shown to
downregulate the expression of connexin 40 (Cx40) in gap
junctions, thereby affecting intercellular communication and
inducing arrhythmias [108].

3.4. Fibroblast Growth Factor 23. As a member of the FGF
family, FGF23 derived from injured myocardial tissues, in
contrast with the beneficial role of FGF21, promotes fibrosis
and diastolic dysfunction after MI or IR [109]. In this
pathological process, FGF23 is frequently accompanied by
the activation of -Klotho and TGF-f [110]. Recombinant
FGF23 administration can directly induce pathological car-
diac hypertrophy [111]. Furthermore, FGF23 elevation in the
circulation is highly associated with an increased risk of car-
diovascular events, such as myocardial ischemia, stroke, and
cardiovascular disease-related deaths [112]. Intriguingly, the
ERK1/2 pathway plays a critical role in FGF23 function and
could enhance phosphate-mediated vascular calcification by
promoting osteoblastic differentiation [113].

3.5. Matrix Metalloproteinases. Matrix metalloproteinases
(MMPs) are a group of proteins that are capable of selectively
degrading ECM and regulate most of the ECM remodeling
in CHF patients via cardiac remodeling and left ventricular
dilatation [114]. All MMPs are negatively regulated by tissue
inhibitors of metalloproteinase (TIMPs), and MMP/TIMP
imbalance may result in heart disease [115].

MMPs are dramatically increased during HF progress and
recovery [116]. In sheep models simulating the process of
left ventricular hypertrophy, failure, and recovery, different
MMP subtypes and their TIMP inhibitors were abnormally
regulated during the process of myocardial ECM remodeling,
thereby affecting the development of HF and ventricular
remodeling [117]. In addition, the levels of MMP-2 and MMP-
9 in patients with coronary atherosclerotic heart disease are
significantly increased, while exogenous inhibitors restrain
the expression and activity of MMPs to maintain the stability
of atherosclerotic platelets [117]. Together, this evidence
indicates that MMPs are harmful cardiokines, which exac-
erbate the prognosis of heart disease. TIMPs may act as
new therapeutic targets for cardiac diseases via inhibition of
MMPs, but this approach requires further investigation.

3.6. Platelet-Derived Growth Factors. Platelet-derived growth
factors (PDGFs) are commonly expressed in the myocardium
and interstitial fibroblasts [118]. PDGFs stimulate patho-
logical hyperplasia of fibroblasts and convert them into
myofibroblasts by activating specific receptors (PDGFR-«
and PDGFR-f3), resulting in the production of a significant
amount of collagen, which is involved in the development
of fibrosis [119, 120]. PDGF is also closely related to the
occurrence and progression of coronary atherosclerosis, in
which PDGF-D affects the stability of coronary atheroscle-
rotic plaques [121]. A previous study indicated that PDGF
could promote the accumulation of smooth muscle cells
and the formation of foam cells in atherosclerosis [122]. In



addition, PDGF has the potential to induce the division
and proliferation of damaged epithelial or endothelial cells,

resulting in the subsequent aggravation of atherosclerosis
[123].

4. Undetermined Role of Cardiokines in CVD

4.1. Transforming Growth Factor-f3. Transforming growth
factor-3 (TGF-p) is secreted by multiple cell types including
cardiomyocytes, which affects the regulation of cell growth
and differentiation. It has been reported that TGF-f is
a regulator of neutrophil infiltration and can clean up
the necrotic cells and matrix caused by the inflammatory
response during M1 recovery. TGF-f3 is therefore significantly
associated with undesirable ventricular remodeling after
infarction [124-126]. Recently, accumulating evidence has
shown that members of the TGF-f superfamily including
growth differentiation factor-15 (GDF-15), myostatin, and
activin A play a cardioprotective role in maintaining normal
cardiac homeostasis and inhibiting myocardial hypertrophy
[34, 127-129]. In addition, FSTL1 (mentioned earlier in the
article) is a regulatory factor for GDF-15 in cultured cardiac
myocytes or mouse hearts, where it protects against cardiac
stress [130], while overexpression of FSTL3 can reverse the
effects of activin A to promote cardiomyocyte survival and
inhibit cardiomyocyte hypertrophy [131, 132], suggesting that
activin A and FSTL3 exert counteractive effects in regulat-
ing myocardial cell growth and fibrosis and the response
to ischemic stress. Collectively, these findings deepen our
understanding of cardiokine networks.

In contrast, several studies have demonstrated that TGF-
B inhibition in the late stage of MI may improve myocardial
remodeling, while TGF-f inhibition in the early stage has
opposite effects [133, 134], suggesting that the activation of
TGEF- 8 may protect the heart from ischemic injury at an early
stage, but its beneficial effect is later diminished. Similarly,
Rainer et al., using a mouse model of selective TGF-f receptor
1 or 2 knockout, demonstrated that the inhibitory effects
of TGF-f signaling on cardiomyocytes could significantly
suppress neutrophil aggregation in the heart, restrain the
inflammatory reaction, prevent cardiac rupture after MI,
and improve remodeling [126]. Selective TGEF-f inhibi-
tion improves ventricular remodeling by directly reducing
the production of proinflammatory cytokines/chemokines
and inhibiting neutrophil activation and migration through
inducing the synthesis of other protective cardiokines. How-
ever, specific and pleiotropic characteristics of TGF-8 may
contribute to various potential side-effects of nonselective
inhibition [135]. The adverse roles of TGF-f at different stages
of MI could also increase its complexity for clinic application,
so careful assessments must be undertaken to determine how
TGEF-f could be adopted in clinical treatment to improve
ventricular remodeling.

4.2. Clq/TNF-Related Protein 9. Clq/TNF-related protein 9
(CTRPY) is a novel cardiokine with high relative homology
to adiponectin (APN) [136], which is primarily secreted by
adipose tissue and cardiac endothelial cells [137]. CTRP9
can maintain homeostasis and improve the prognosis of

BioMed Research International

heart disease via its inhibitory effects on inflammation, post-
IR injury, and ventricular remodeling after MI [138-141].
Kambara et al. [138, 142] demonstrated that CTRP9 levels are
reduced by nearly 50% in mice following myocardial IR injury
with an increase of blood levels of free fatty acid (FFA). An
exogenous injection of CTRPY could dramatically attenuate
MI and improve cardiomyocyte apoptosis after myocardial
ischemia, suggesting that CTRP9 is a protective cardiokine
in the cardiovascular system. In contrast, it was also found
that heterozygous or homozygous CTRP9 knockout mice
showed less cardiac hypertrophy and pulmonary congestion
after pressure overload, as well as better systolic cardiac
function, compared with wild-type mice [137]. Moreover,
CTRPY overexpression induces serious cardiac dysfunction,
suggesting that CTRP9 might exert a deleterious effect on
cardiac hypertrophy and HE Since the role of CTRP9 in car-
diac diseases has not been fully determined, future studies on
clarifying how CTRPY triggers different signaling pathways
during the pathological process of cardiac hypertrophy are
required.

5. Conclusions

The physiological role of cardiokines has been attracting
more attention since cardiokines have shown significant
potential as biomarkers to evaluate cardiac function and as
therapeutic targets for cardiac diseases. It has been suggested
not only that cardiokines have physiological effects on cardiac
tissues, but that they may also exert regulatory effects on
peripheral organs and tissues [143, 144]. Further detailed
studies on the role of cardiokines in the crosstalk between
the heart and peripheral organs are required. In addition,
the regulatory effects of cardiokines are often complex, as
they can exert bidirectional actions to promote the repair
of cardiac injury and/or aggravate an imbalance of cardiac
function. Since the physiological role of cardiokines in
cardiac diseases is not fully determined, additional studies are
warranted.
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